Skip to main content

Probabilistic Model Specification

NimbusSDK provides pre-built probabilistic models powered by RxInfer.jl, a reactive message passing framework for efficient Bayesian inference.
Nimbus Models Available:
  • NimbusLDA - Fast, shared covariance (Python + Julia)
  • NimbusQDA - Flexible, class-specific covariances (Python + Julia)
  • NimbusSoftmax - Non-Gaussian static model (Python only)
  • NimbusProbit - Non-Gaussian static model (Julia only)
  • NimbusSTS - Stateful adaptive model (Python only)
For detailed implementation, see the individual model pages above.

Model Architecture

The static models (LDA, QDA, Softmax, Probit) are built on factor graphs with reactive message passing:
        Prior               Likelihood            Posterior
    p(class)  ────────────────────────────────►  p(class|data)


                      p(data|class)
                   (Gaussian or Softmax)

Factor Graphs

Factor graphs represent the joint probability distribution: p(class,data)=p(class)p(dataclass)p(\text{class}, \text{data}) = p(\text{class}) \cdot p(\text{data}|\text{class}) Components:
  1. Prior: p(class)p(\text{class}) - uniform or learned class probabilities
  2. Likelihood: p(dataclass)p(\text{data}|\text{class}) - Gaussian (LDA/QDA) or a non-Gaussian classifier (Softmax/Probit)
  3. Posterior: p(classdata)p(\text{class}|\text{data}) - computed via message passing

Reactive Message Passing

RxInfer.jl uses reactive programming for efficient inference:
Data Stream ──► Factor Graph ──► Message Passing ──► Posterior Updates


              (Incremental Updates)
Benefits:
  • Incremental processing: Process data chunks as they arrive
  • Low latency: 10-25ms per chunk
  • Memory efficient: Constant memory usage
  • Real-time capable: Streaming inference without buffering

Model Comparison

FeatureNimbusLDANimbusQDANimbusSoftmax (Py)NimbusSTS (Py)
CovarianceShared across classesClass-specificN/A (logistic)N/A (state-space)
Decision BoundaryLinearQuadraticNon-linear (flexible)Dynamic (time-varying)
Temporal ModelStaticStaticStaticStateful (EKF)
FlexibilityLowerHigherHighestAdaptive
SpeedFastest (10-15ms)Fast (15-25ms)Fast (15-25ms)Real-time (20-30ms)
Best ForMotor imagery, stationaryP300, overlapping classesComplex multinomialNon-stationary, long sessions
State ManagementNoneNoneNonepropagate_state(), get_latent_state()
Online Learningpartial_fit()partial_fit()partial_fit()Continuous with delayed feedback
Use CaseShort sessionsShort sessionsShort sessionsLong sessions, cross-day, adaptive BCI
Training TimeFastModerateModerate
ParametersFewer (efficient)More (flexible)Most (very flexible)
Best ForWell-separated classesOverlapping distributionsComplex multinomial tasks
Overfitting RiskLowestModerateHigher (more parameters)
Data Requirements40+ trials/class60+ trials/class80+ trials/class

BCI Paradigm Applications

Motor Imagery

Recommended Model: Bayesian LDA (NimbusLDA) Motor imagery classes are typically well-separated in CSP feature space, making NimbusLDA ideal:
  • 2-class (left/right hand): 75-90% accuracy
  • 4-class (hands/feet/tongue): 70-85% accuracy
  • Inference: 10-15ms per trial
  • ITR: 15-25 bits/minute
Why NimbusLDA?
  • Fast inference for real-time control
  • Shared covariance assumption holds well
  • Lowest data requirements
See Basic Examples - Motor Imagery for implementation. Recommended Model: Bayesian QDA (NimbusQDA) P300 target and non-target ERPs have overlapping distributions, requiring flexible modeling:
  • Binary detection: 85-95% accuracy (with averaging)
  • Inference: 15-25ms per epoch
  • ITR: 10-20 bits/minute
Why NimbusQDA?
  • Class-specific covariances capture ERP morphology
  • Better for overlapping distributions
  • Handles individual differences
See Basic Examples - P300 Speller for implementation.

SSVEP (Steady-State Visual Evoked Potential)

Recommended Model: NimbusLDA or NimbusQDA
  • 4-target: 85-95% accuracy, use NimbusLDA
  • 6+ target: 80-90% accuracy, use NimbusQDA
  • Inference: 10-20ms per trial
  • ITR: 30-50 bits/minute
Model Selection:
  • NimbusLDA: For 2-4 targets with well-separated frequencies
  • NimbusQDA: For 6+ targets with overlapping harmonics
See Advanced Applications - SSVEP Control for implementation.

Paradigm Comparison

ParadigmRecommended ModelTypical AccuracyITRUser Training
Motor ImageryNimbusLDA (or NimbusSTS for long sessions)70-85% (4-class)15-25 bits/minHigh
P300NimbusQDA85-95% (with reps)10-20 bits/minLow
SSVEPNimbusLDA / NimbusQDA85-95% (4-class)30-50 bits/minLow
Long-duration AdaptiveNimbusSTS (Py)75-90% (maintains over time)VariesMedium
New: Use NimbusSTS (Python-only) for sessions >30 minutes or when you observe accuracy degradation over time. It’s the only model that explicitly handles temporal drift and non-stationarity.

Advanced Techniques

Hyperparameter Optimization

Use grid search or Bayesian optimization to find optimal hyperparameters:
from sklearn.model_selection import GridSearchCV
from nimbus_bci import NimbusLDA

param_grid = {
    'mu_scale': [1.0, 3.0, 5.0, 7.0],
    'class_prior_alpha': [0.5, 1.0, 2.0]
}

grid = GridSearchCV(NimbusLDA(), param_grid, cv=5, n_jobs=-1)
grid.fit(X_train, y_train)

print(f"Best params: {grid.best_params_}")
best_clf = grid.best_estimator_
See Python SDK - sklearn Integration for more tuning examples.

Cross-Subject Transfer Learning

Train on multiple subjects for better generalization:
from nimbus_bci import NimbusLDA, estimate_normalization_params, apply_normalization
import numpy as np

# Collect data from multiple subjects
all_X = [load_subject_data(s) for s in subjects]
X_combined = np.vstack(all_X)

# Normalize across subjects
norm_params = estimate_normalization_params(X_combined, method="zscore")
X_norm = apply_normalization(X_combined, norm_params)

# Train with higher regularization
clf = NimbusLDA(mu_scale=7.0)  # Higher than single-subject
clf.fit(X_norm, y_combined)

# Calibrate for new subject
clf.partial_fit(X_new_subject[:20], y_new[:20])

Ensemble Methods

Combine multiple models for improved robustness:
from nimbus_bci import NimbusLDA, NimbusQDA
import numpy as np

# Train multiple models
clf_lda = NimbusLDA()
clf_lda.fit(X_train, y_train)

clf_qda = NimbusQDA()
clf_qda.fit(X_train, y_train)

# Ensemble prediction (weighted average)
probs_lda = clf_lda.predict_proba(X_test)
probs_qda = clf_qda.predict_proba(X_test)

ensemble_probs = 0.6 * probs_lda + 0.4 * probs_qda
ensemble_predictions = ensemble_probs.argmax(axis=1)

Confidence Calibration

Ensure predicted probabilities match actual accuracy:
from sklearn.calibration import CalibratedClassifierCV
from nimbus_bci import NimbusLDA, compute_calibration_metrics

# Train and calibrate
clf = NimbusLDA()
clf.fit(X_train, y_train)

clf_calibrated = CalibratedClassifierCV(clf, method='isotonic', cv='prefit')
clf_calibrated.fit(X_val, y_val)

# Check calibration improvement
calib_metrics = compute_calibration_metrics(preds, confidences, y_test)
print(f"ECE: {calib_metrics.ece:.3f}")

Model Limitations

General Limitations:
  • Static models: No built-in temporal dynamics (use preprocessing for temporal features)
  • Supervised only: Require labeled training data
  • Fixed structure: Cannot modify factor graph structure at runtime
Model-Specific:
  • NimbusLDA: Assumes Gaussian distributions with shared covariance, linear decision boundaries
  • NimbusQDA: Assumes Gaussian distributions with class-specific covariances, higher overfitting risk with limited data
  • NimbusSoftmax / NimbusProbit: May require more training data than LDA/QDA for complex tasks

Troubleshooting

Symptoms: High training accuracy, low test accuracySolutions:
  • Increase mu_scale (stronger regularization)
  • Use cross-validation for hyperparameter tuning
  • Collect more training data
  • Apply ensemble methods
Symptoms: Good within-subject, poor across-subject performanceSolutions:
  • Train on multi-subject data
  • Increase regularization (mu_scale)
  • Normalize features consistently
  • Use subject-specific calibration
Symptoms: Model biased toward majority classSolutions:
  • Use class weighting
  • Apply SMOTE or other resampling
  • Adjust decision threshold
  • Use stratified cross-validation

Next Steps


Development Philosophy: Nimbus provides battle-tested, production-ready models (NimbusLDA, NimbusQDA, NimbusSoftmax (Py), NimbusProbit (Jl), NimbusSTS (Py)) that are proven effective for BCI applications. These models cover the majority of BCI use cases with fast inference, uncertainty quantification, and online learning. NimbusSTS adds adaptive capabilities for non-stationary data and long-duration sessions.