NimbusProbit — Bayesian Multinomial Probit Regression
Julia:NimbusProbit | Python: Not currently availableMathematical Model: Bayesian Multinomial Probit Regression NimbusProbit is NimbusSDK.jl’s most flexible static classifier. Compared to Gaussian models (
NimbusLDA, NimbusQDA), it can represent non-Gaussian decision boundaries while still producing calibrated posterior probabilities.
Availability
- Julia SDK: ✅
NimbusProbit - Python SDK: ❌ Not currently available (use
NimbusSoftmaxfor a non-Gaussian static model in Python)
Quick Start (Julia)
When to Use NimbusProbit
- Complex multi-class tasks where
NimbusLDA/NimbusQDAplateau - Non-Gaussian boundaries (e.g., overlapping clusters not well modeled by class-conditional Gaussians)
- You still need uncertainty quantification and stable probabilities
When Not to Use It
- If latency must be minimized: start with
NimbusLDA, thenNimbusQDA - If the task is non-stationary / drifting: use
NimbusSTS(Python-only)
Next Steps
- Julia SDK reference:
/julia-sdk/api-reference - Static Gaussian models:
/models/rxlda,/models/rxgmm - Python non-Gaussian static model:
/models/rxpolya